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Background and Motivation

Hanbury
Brown-Twiss
(HBT) . : .. :
o ey Hanbury-Brown—Twiss (HBT) interferometry (also, 'intensity
witl

i oy it interferometry’ or 'femtoscopy’) relies on two-particle

uctuations . .

S momentum correlations to study the geometric and flow
Plumberg properties of heavy-ion collisions:

m azimuthally-sensitive HBT analyses communicate
important information about deformations in the structure
of the freeze-out surface

m odd harmonics present in HBT radii known to open the
window to the study of event-by-event fluctuations

m fulfills a vital role in constraining the initial state of the
fireball and its subsequent evolution
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Part 1: 3rd order HBT
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HBT Basics
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with Y 1
LR Two particles: p1, po — §=p1 — p2, K = =(p1 + p2)
uctuations 2
Christopher J
Epl Ep2 d3 1d3p2

Correlation function: C(p1, p2) = — .
(En i) (Emit)

Ignoring final-state interactions, C may be fit to the form:

(q,K)—li)\( exp Z R q,-qJ- ,
ij=o,s,l

R; = Ri(\ff[, ) — measure ®y with respect to what?



Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event
fluctuations

Christopher J
Plumberg

(arXiv:1306.148|

Fourier moments of R,f(i?)

m Experimentally, one measures HBT correlations as a
function of the difference between ®x and one of the flow

angles ¥,
= we plot observable quantities against ®, — WV,
(n=1,2,3,..))

m The flow angle is defined by W, in v,e™» = <ei”¢P>

m The v, are the anisotropic flow coefficients and ¢, is the
azimuthal angle of pr of the emitted particles in the lab
frame

m = Fourier-decompose the Rg:

ﬁumﬂm)=:2§j(§?|mwmwwK—wm

RIGHIRI)sinln(@x — Wa)]) + R o(IK])
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PHENIX data

g Hanbury T. Niida, (QM 2012, arXiv:1304.2876) (integrated over K )
(HBT)
interferometry
with
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fluctuations
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Important features to understand:
m Different signs of Fourier coefficients in out and side
directions
m Different oscillation amplitudes: Rg,,,/Rf’,, >1



Emission function

Ity We define the emission function S(x, K) as the Wigner density

Brown-Twiss .
~ (HBT) of the fireball
interferometry

with

event-by-event Emission function: /d4x S(x,K) = Ex

dN
d3*K

fluctuations

Christopher J

Taking A(K) =1, C and S may be related by

[ d*xe>S(x, K)|?

C(g,K)~1
(@ K)~ 14 | a5, K

m For Gaussian sources S(x, K), R = (% — 8it)(% — B;t)),
where
mX=x—(x),t=t—(t), =K/K® and
d*x f(x)S(x,K
= (F() = e

= given S(x, K), Rg(R) may be computed directly



Emission function
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fluctuations m Consider S with two kinds of different triangular
deformations:
m " Geometric case” - Triangular spatial deformation with
radial flow, no triangular flow
m "Flow case” - Triangular flow, no spatial deformation

m Can obtain triangular oscillations of Rg- from

m triangular flow deformation
m triangular spatial deformation coupled to radial flow
m combinations thereof




HBT oscillation amplitudes: two examples
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Part 1: Conclusions

Hanbury
Brown-Twiss
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i m Without radial flow, a triangular spatial deformation of the

event-by-event

i source at freeze-out leaves no measurable trace in the
Tinfsiarfiar { HBT radii oscillations

m Triangular oscillations of HBT radii may generally result
from an admixture of triangular collective flow and
triangular spatial deformation coupling to radially
symmetric flow

m We can distinguish " flow domination” from " geometry
domination” by the phases and Kr-dependence of the
respective oscillation amplitudes; PHENIX data appear to
point to " flow domination”
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Event-by-event hydrodynamics
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Next steps...

Hanbury

Bro(wn-T\)Niss m Our analysis assumed Gaussian, ensemble-averaged ansatz for
HBT

interfell'ometry S(X7 K)
with = what do we find in an event-by-event (EBE) hydrodynamic

event-by-event

fluctuations treatment?

Christopher J

Plumt m Construct (viscous) hydrodynamic emission function using
! Cooper-Frye formula:

1
Snaclx.K) = 3 /Z ( )K~d30(Xf)(54(X—Xf)f(Xf,K),
xf
FOoK) = fotof
1 X(K2)KHK 7,

- fo(1+ £
Ko m/T+1 T 272(e+p) o(1£15)
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Next steps...

Hanbury
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interfell'ometry S(X7 K)
with = what do we find in an event-by-event (EBE) hydrodynamic
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Plumt m Construct (viscous) hydrodynamic emission function using
! Cooper-Frye formula:

1
Snaclx.K) = 3 /Z ( )K~d30(Xf)(54(X—Xf)f(Xf,K),
xf
FOoK) = fotof
1 X(K2)KHK 7,

= eKuwirx1 T 2T%(e+ p) o1+ o)

m How are our results affected by ensemble-averaging?
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Next steps...

Hanbury

Bro(wn-T\)Niss m Our analysis assumed Gaussian, ensemble-averaged ansatz for
HBT

interfell'ometry S(X7 K)
with = what do we find in an event-by-event (EBE) hydrodynamic

event-by-event

fluctuations treatment?

Christopher J

Plumberg m Construct (viscous) hydrodynamic emission function using
Cooper-Frye formula:

1
Shydro(Xv K) = (27T)3/):( )K‘dSU(Xf)54(X_Xf)f(Xf7K),
Xf
f(x,K) = fo+of
2 WKV
1 X(K)KKW“Vfb(lj:ﬁ))

e(Ku—p)/T +1 2T2%(e+ p)

m How are our results affected by ensemble-averaging?

m How should one extract HBT radii from a non-Gaussian source?
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(At least) 3 Ways of getting HBT radii

Hanbury
BT m Option 1: compute R,-Jz- from Sp,dr0 Via source variances,
interferometry

with
event-by-event

o . 1 C
fluctuations Rg — <(Xl - /Blt)()(_j - Bjt)> = _2

(C - ]‘) 8‘7:6% q—0

m Option 2: Construct C(q, K) from Spyqr0 — extract Rg
from Gaussian fit to correlator,

C—1r~exp (* Z,’J’ RUQ'qqu)

m Option 3: Construct C(q, K) from Spyqro — extract Rg
from " g-moments method" :

(R1). [ dqaqiq(C—1)

i~ [ d3q (C—1) where R = (R,f)(K)
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(At least) 3 Ways of getting HBT radii

Hanbury
B - Twi . . .

BT m Option 1: compute R,-? from Spyaro Via source variances,
interferometry

with 5
event-by-event 1 a C
fluctuations R2 _ <()‘? _ IB'E)(S’( _ B'i.)> —

iy ! ! J J - . .
2(C—1) 0qi0q;|,

m Option 2: Construct C(q, K) from Spyqr0 — extract Rg
from Gaussian fit to correlator,

C—1~exp (_ E,-,,- R,'j2'QiCIj>

m Option 3: Construct C(q, K) from Spyq,0 — extract Rg
from " g-moments method"”:

1 [ dqqiqi(C—1)
"= " (c-1

where R = (R?) (K)
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(At least) 3 Ways of getting HBT radii

Hanbury

B -Twi . . .

BT m Option 1: compute R§ from Spyaro Via source variances,
interferometry

with 5
event-by-event 1 8 C
fluctuations 2 v. rt vl ¥ —
Rij - <(XI - /Blt)(XJ - BJt)> - 2(C - 1) 8qg:0q;

Christopher J qi0q;j q—0

Plumberg

m Option 2: Construct C(q, K) from Spyqr0 — extract Rg
from Gaussian fit to correlator,

C—1~exp (_ Zi,j R,'J2'QiCIj>

m Option 3: Construct C(q, K) from Spyqr0 — extract Rg
from " g-moments method":

30 a.0- _
(R_l)ij = fjjg,zl(zjéi 1)1), where R = (Rg) (K)

N
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Comparison of HBT methods
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q—moments

Gaussian fit
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Hydrodynamic approach

g Hanbury K -dependence of R,% 3 from hydrodynamics
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Hydrodynamic approach
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Hydrodynamic approach

M -dependence of Rg’3/R§70 from hydrodynamics
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Hydrodynamic approach

Hanbury M | -dependence of Rgs,a/Rg,o from hydrodynamics3
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Part 2: Conclusions

Hanbury
Brown-Twiss
(HBT)
interferometry
with
event-by-event

fluctuations m VISH2+1 qualitatively reproduces general trends of
Christopher J PHENIX data

m Qualitative features of K| -dependence of hydrodynamic
R,-12-73 similar to toy model for small K|, more discrepancies
at K| 2 0.3 GeV

m Subtleties involving ensemble-averaging and the
construction of the correlation function have not been
addressed here
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Thanks for your attention!

Thanks also to my collaborators

Ulrich Heinz and Chun Shen!
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Double-Fourier formalism

Hanbury Define

Brown-Twiss
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interferometry SZ m = e—lm\U3 / @eleq5 / d¢ie1m¢K S(¢, ¢K)7

ith
i < 2T 27

event-by-event
fluctuations

—T

00
— Zy = e Vs Z Sg’m_ge_im((bK_\%) =X+

m=—0o0

We can show, e.g.,

(x2) = / ‘dn/o TdT/O rdrrr? (X — &)

(xs) = / dn/k TdT/\ rdr2mwr)s
J —o0 J0 J0O

m Since R? = <X52> — <xs>2, no dependence on ¢ > 3
(similarly for other R,-Jz-)!

m N.B.: same expression contains all orders in
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Double-Fourier formalism

Hanbury Define

Brown-Twiss

~(HBT) . Q d¢ , 7T dd)K .

|nterfe|.'f|:1etry Sf m = e_’mw3 / 2 *ele¢ / 42 elm¢K S((;S, ¢K)7
Wi ’ i vy

event-by-event - -

fluctu;/tions o0

Christopher = _iew _im ¢ _w = ]

ooy — 2 = e ’ E : Sz’m_ee (Gr=¥a) = X+ i
In m=—0o0

We can show, e.g.,

(x2) = /_ d’l7/0 TdT/O rdrrr? (Xo — A3)

(xs) = / dn/ TdT/ rdr2mr))
—o0 0 0

m Since R? = (x2) — (xs)?, no dependence on £ > 3
(similarly for other R,-Jz-)!
m N.B.: same expression contains all orders in P
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Double-Fourier formalism

Hanbury Define

Brown-Twiss

~ (HBT) i ™ d¢ . ™ dd)K .
St = e_'m%/ 26'%/ eI S (5, ),
wi ’ T T
event-by-event —Tr —Tr
fluctu;/tions 00
Christopher 3 — Ad —im(Px—V — .
Jw.tm;\} J Zp = e : Z SZ,m—Ee (Pr—¥3) = Xe+ Ve
S Moo

We can show, e.g.,

(x2) = /_ dn/o TdT/O rdrrr? (Xo — A3)

(xs) = / dn/ TdT/ rdr2mr))
—oo 0 0

m Since R? = (x2) — (xs)°, no dependence on ¢ > 3
(similarly for other Rg)!

m N.B.: same expression contains all orders in
28 /29




Toy model for the source

Hanbury
Brown-Twiss 2 2
~ (HBT) So(K) (r—=7) (n—m0)
interferometry S(X’ K) = —exp | — -

with T 2AT2 2An?
event-by-event
fluctuations

Christopher J 2R2

2

(1+ 275 cos(3(¢ — 3)))

M K
—  ZE cosh(n — Y)coshn + —= cos(¢ — Dk ) sinh 1,
To To

nrer

"= (1+ 275 cos(3(¢ — 1/3)))

€3: triangular azimuthal deformation
v3: triangular flow deformation

7n¢: collective radial flow rapidity

b3 triangular flow velocity angle, points in direction of largest flow
rapidity and steepest descent of spatial density profile (note:
W, #£ 1, in general)
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